3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #9, Helsinki, FINLAND, 6 – 8 February 2001
Tdoc N5-010036

Source:
Ericsson, Alcatel

Title:
Additional createAndRouteCallLegErr operation.
Agenda Item:

Document for:
Approval
Category:

Work Item ID:

Doc Summary:

Specs involved:

Introduction

During the CN5#8 meeting in Scottsdale, it was agreed to have only one event reporting mechanism for the Multi-party call control, notably events would be reported on CallLeg level, see also TDOC N5-000327. Therefore the operations routeRes() and routeErr() became superfluous. Furthermore the name of the operation routeReq() was changed to a more indicative name createAndRouteCallLeg(). However, in Scottsdale it was noted that needs to be clarified what happens in case the createAndRouteCallLeg() operation fails.

Problem description

The createAndRouteCallLeg() operation is a so-called convenience operation: it combines a number of atomic operations into one and also only contains the essential parameters needed to achieve the operation objective. Convenience operations thus increase performance and allow applications to deal with an easy way to achieve a certain objective (in this case set up a connection to a party).

However, in case one of the atomic operations, that the convenience operation is composed off, fails it must be described how the application should deal with this. Two alternatives exists: either a complete roll-back or to a state in which the last atomic operation succeeded.

Problem solution

For the latter case it would implicate that applications are still forced to deal with atomic operations in error situations. Therefore, a complete roll-back is the preferred way. However, at the moment there is no way to indicate that the createAndRouteCallLeg() failed. This means an additional operation is needed on the IpAppMultiPartyCall interface. This operation should be called createAndRouteCallLegErr() and the createAndRouteCallLeg() should be renamed to createAndRouteCallLegReq() to indicate it is an asynchronous operation.

Furthermore it should be stated clearly in what cases the createAndRouteCallLegErr() will be invoked. In general the cases that are related to a detection point and will be reported by eventReportRes() (e.g. busy, no_answer, routing failure) will not lead to invocation of createAndRouteCallLegErr(). It is only intended to be invoked for general error cases like e.g. the routing request was refused.

Impact on the specification.

Below the basic implact on the specification is outlined.

4.1.1 Interface Class IpMultiPartyCall
Inherits from: IpService
The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It also gives the possibiltiy to manage call legs explicitly. Via the legs the application can also influence the media in multi-media calls. If an application uses the multi-party call control interface it may call the createAndRouteCallLeg() operation several times without disconnecting already connected destination. Therefore, an application may implicitly create more then one (destination) call leg. However, there can only be at most one call leg that owns the call ("call owner") at any time. In contrast to the conference service it is not possible to move legs to another call object.
<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID, callLegList : out TpCallLegIdentifierSetRef) : TpResult

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalCalledAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, callLeg : out TpCallLegIdentifierRef) : TpResult

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef, callLegReference : out TpCallLegIdentifierRef) : TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : TpResult

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult

Method

getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the order of creation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callLegList : out TpCallLegIdentifierSetRef

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references.
Raises

TpGeneralException,TpGCCSException
Method

createCallLeg()

This method requests the creation of a new call leg object The call leg will be associated with the call, but not attached. The call leg can be attached to the call (using attachMedia) when the call leg is in the connected state (i.e. it has been answered).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.
targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalCalledAddress : in TpAddress

Specifies the original address to which the call was initiated.
redirectingAddress : in TpAddress

Specifies the last address from which the call was redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service identities and interaction indicators).
callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the call leg created.
Raises

TpGeneralException,TpGCCSException
Method

createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMedia() operation is needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through the appLegInterface parameter.

The extra address information (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.
redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested events will be reported by the eventReportRes() operation on this interface.
callLegReference : out TpCallLegIdentifierRef

Specifies the reference to the CallLeg interface that was created.
Raises

TpGCCSException,TpGeneralException
....

4.1.2 Interface Class IpAppMultiPartyCall
Inherits from: IpInterface
The Multi-Party call application interface is implemented by the client application developer and is used to handle call request responses and state reports.
<<Interface>>

IpAppMultiPartyCall

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier, errorIndication : in TpCallError) : TpResult
getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : TpResult

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : TpResult

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : TpResult

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : TpResult

Method

createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful – the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and not by this operation.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callLegReference : in TpCallLegIdentifier
Specifies the reference to the CallLeg interface that was created.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoReport : in TpCallInfoReport

Specifies the call information requested.
Raises

TpGCCSException,TpGeneralException
Method

getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call
report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.
usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).
Raises

TpGCCSException,TpGeneralException
Method

superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.
fault : in TpCallFault

Specifies the fault that has been detected.
Raises

TpGCCSException,TpGeneralException
Method

getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.
Raises

TpGeneralException,TpGCCSException
Method

getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
Method

callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.
report : in TpCallEndedReport

Specifies the reason the call is terminated.
Raises

TpGeneralException,TpGCCSException
Conclusion

The proposal in this contribution outlines how a complete roll-back for the createAndRouteCallLeg can be achieved. We kindly request to accept the proposal and put it in the specification.

